Renate Mayntz, Thomas P. Hughes (Editors)

The Development of Large Technical Systems

Campus Verlag · Frankfurt am Main
Westview Press · Boulder, Colorado
CONTENTS

Foreword 5

1. Large technical systems: Concepts and issues
 Bernward Joerges 9

2. The emergence of an early large-scale technical system:
 The American railroad network
 Stephen Salsbury 37

3. The evolution of the technical system of railways in
 France from 1832 to 1937
 François Caron 69

4. The development of the German railroad system
 G. Wolfgang Heinze and Heinrich H. Kill 105

5. Looking for the boundaries of technological determinism:
 A brief history of the U.S. telephone system
 Louis Galambos 135

6. The telephone in France 1879 to 1979:
 National characteristics and international influences
 Catherine Bertho-Lavenir 155

7. The politics of growth: The German telephone system
 Frank Thomas 179

8. The United States air traffic system:
 Increasing reliability in the midst of rapid growth
 Todd La Porte 215

9. The French electrical power system:
 An inter-country comparison
 Maurice Lévy-Leboyer 245

10. The dynamics of system development in a comparative perspective:
 Interactive videotex in Germany, France and Britain
 Renate Mayntz and Volker Schnieder 263

Contributors 299
CHAPTER 8
THE UNITED STATES AIR TRAFFIC SYSTEM: INCREASING RELIABILITY IN THE MIDST OF RAPID GROWTH

Todd R. La Porte

1 Introduction

United States air traffic system (USATS) providing both air navigation and traffic separation became a nationwide governmental service in 1936 after two decades of expanding private and public activity. Within fifty years, this system has grown into an extraordinary matrix of 600 airports and 300,000 miles of airways in continuous flux and motion as millions of people and mountains of freight (and air mail) are shepherded throughout the U.S. It has been a remarkable development of a very large-scale, publicly owned technical system with quite different properties than the other systems discussed in this book. It is at once, more far-flung and complex, and less integrated and dependent upon technologies as a means of coordination. It has a different relationship to the national state. After a brief review of the dimensions of the USATS, we turn to these properties, suggest their importance for more general understanding of large-scale technical systems, and go into more detail in describing the extraordinary development of the USATS.

The initial stimulus was transporting mail by air. Both early airmail and airways services were managed by the U.S. Post Office Department until 1925, when private contractors took over the mail services. Air mail flights had expanded from the first regional (daylight) links in 1918 between New York and Washington, D.C., to reach across the continent with the development of night-flying navigation aids. Rotating beacon lights set up every 10 miles guided low-flying pilots over 2,000 miles of lighted airways between New York; Dayton, Ohio; Chicago; Cheyenne, Wyoming; to San Francisco (with a spur to Los Angeles). Coast-to-coast runs took 34 hrs. 20 min. westward, and 29 hrs. 15
min. eastward in clear weather, with airplanes travelling at an average air speed of 100 mph. In the first months of service in 1918, 66,555 lbs. (about 33 tons) of mail were flown at an average speed of 72.6 miles per hour. By 1925, there were 96 planes in service. Regular passenger travel also was begun in 1925 in the eastern United States and by 1930 the five major airlines had carried about 400,000 passengers. By 1927, this growing airways system was handed over to the Department of Commerce.

Full use of airplane capabilities awaited the technical developments necessary to deal with blinding weather, the ubiquitous enemy of pilots. By 1929, the accumulated inventions of the artificial horizon, directional (heading) gyro, and improved altimeter in the cockpit and ground based radio navigation ranges combined to provide the instruments necessary to maintain aircraft altitude orientation and navigation information while "flying blind" in dense clouds. Insuring the capability for "all-weather" flying and navigation through increasingly accurate instrumentation and an expanding network of ground based navigation and communication capabilities continues to be a priority in the Air Traffic Control (ATC) system.

Early institutional developments set much of the basic pattern that still persists. Government subsidies of air mail contracts in the late 1920s provided the infant industry a stable market and prompted techniques that became the basis for airline operations. They also laid the foundation for the present Federal role in providing navigable air routes and other air traffic services. With considerable encouragement from the aviation industry, the Federal government reluctantly accepted responsibility for licensing pilots, inspecting aircraft and supervising the use of airfields and navigation safety.

Due in large part to the controversy surrounding the case of General Billy Mitchell and the use of air power for military purposes and the work of the President's Aircraft Board (1925), the military was separated from civil aviation with the establishment of the Aeronautics Branch, (to become the Bureau of Air Commerce in 1934) within the Department of Commerce. In 1940, experimenting with various regulatory and administrative arrangements, President Roosevelt re-organized the Civil Aeronautics Authority. Economic regulatory functions were placed in a new Civil Aeronautics Board. Navigation and airways management functions remained under the Civil Aeronautics Administration.

By 1940, an embryonic operational air traffic management system was nearly in place and its essential, persisting dynamics established. Several communications and navigation aid innovations had been deployed in the mid-1930s. Twelve airway traffic control centers were spread round the country and airport and airway traffic procedures were standardized.

Finally, an important - political - element in air traffic system development emerged in response to the hazards of air flight. The hazards were made very clear in 1935 when Senator Bronson Cutting was killed in a highly publicized crash. Both the obvious benefit - and threat - to individual leaders became vividly evident. This event focused Congressional attention on the Air Traffic Control System and greatly accelerated air navigation modernization programs. One could describe the repeated pattern of Congressional alarm and complacency as a stimulus/response.

The present system is far-flung, the activities within it intense: thousands of aircraft depart and land at peak periods in the mornings and afternoons in the daily ebb and flow of traffic. Annual traffic in 1980 was over 47 million hours of commercial and private aircraft flight time, 380 million passenger enplanements, and 200 billion revenue passenger miles. Two tiers of airways separate the high flying jets from slower propeller driven craft. High altitude airways are used by a mix of civilian and military airplanes travelling at over half the speed of sound (about 6-7 miles a minute). High flying aircraft are guided through their slower, lower and more numerous brethren to airports with runways over a mile and a half long. Any aircraft above 18,000 ft. must be logged-in, visible on an air control radar screen, and in direct radio communication with an air traffic control center.

The air traffic system is based as much on the cooperation of large cadres of pilots, air controllers, and airways facilities providers as on the array of sophisticated electronic, communications and computer technologies they operate. Its overall performance is remarkable: in 1980, U.S. air traffic controllers handled an aircraft across an airspace 73 million times with no mid-air collisions. (See Table 1: Elements of USATS and Changes in Scale.)

The system's growth has been phenomenal; its record of safety, astonishing. It affords safe passage at any hour, in almost any weather - usually to any airman who is qualified to seek it. It is a system that spans the globe, and reaches to heights where the curve of the earth is visible. What has been the path of its development; the princi-
Table 1: Elements of Air Traffic System and Changes of Scale: 1940-1985

<table>
<thead>
<tr>
<th></th>
<th>1940</th>
<th>1980</th>
<th>[1986]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airports:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(paved, lighted)</td>
<td>776</td>
<td>5,830</td>
<td>6,720</td>
</tr>
<tr>
<td>Aircraft:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop</td>
<td>--</td>
<td>238,160</td>
<td>246,540</td>
</tr>
<tr>
<td>Jet</td>
<td>--</td>
<td>5,869</td>
<td>8,174</td>
</tr>
<tr>
<td>Air travel (in 1000 hours):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Air Carriers</td>
<td>710</td>
<td>6,250</td>
<td>7,360</td>
</tr>
<tr>
<td>General Aviation</td>
<td>3,200</td>
<td>41,000</td>
<td>34,063</td>
</tr>
<tr>
<td>(Revenue Passenger Miles in Millions)</td>
<td>1,050</td>
<td>200,000</td>
<td>270,100</td>
</tr>
<tr>
<td>Air traffic control:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airway miles (1,000s)</td>
<td>32k</td>
<td>296k</td>
<td>325k</td>
</tr>
<tr>
<td>Nav. aids (all types)</td>
<td>340</td>
<td>2,090</td>
<td>2,261</td>
</tr>
<tr>
<td>Landing aids (all types)</td>
<td>--</td>
<td>988</td>
<td>1,166</td>
</tr>
<tr>
<td>Facilities (terminal/route)</td>
<td>11</td>
<td>527</td>
<td>525</td>
</tr>
<tr>
<td>FAA employees (1,000s)</td>
<td>5k</td>
<td>55k</td>
<td>47k</td>
</tr>
<tr>
<td>Aircraft Handled per yr (in 1,000s)</td>
<td>(1945)</td>
<td>2,610</td>
<td>23,600</td>
</tr>
<tr>
<td>Air Carriers</td>
<td>--</td>
<td>7,230</td>
<td>11,794</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>410</td>
<td>36,720</td>
<td>30,523</td>
</tr>
<tr>
<td>Gen. Aviation</td>
<td>2,610</td>
<td>5,990</td>
<td>6,328</td>
</tr>
<tr>
<td>Total</td>
<td>5,630</td>
<td>73,540</td>
<td>75,020</td>
</tr>
</tbody>
</table>

Safety Record:

<table>
<thead>
<tr>
<th></th>
<th>1940</th>
<th>1980</th>
<th>[1986]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Carriers (Dom. Ops.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accid. per 100K hrs</td>
<td>4.2</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Fatal Accidents</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Fatalities</td>
<td>45</td>
<td>0</td>
<td>197</td>
</tr>
<tr>
<td>Fatal accid. per 100K hrs</td>
<td>0.42</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>General Aviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accid. per 100K hrs</td>
<td>108.4</td>
<td>9.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Fatal Accidents</td>
<td>232</td>
<td>618</td>
<td>490</td>
</tr>
<tr>
<td>Fatalities</td>
<td>359</td>
<td>1,239</td>
<td>937</td>
</tr>
<tr>
<td>Fatal accid. per 100K hrs</td>
<td>7.2</td>
<td>1.7</td>
<td>1.53</td>
</tr>
</tbody>
</table>

...ples that have informed it? Are there lessons to be learned from its evolution that alert us to the deeper dynamics of large technical systems?

2 Conceptual perspectives

In this chapter, the United States' huge air transportation system is viewed as a complex socio-technical system of moderately linked organizations shaped by the country's political culture. The system's rapid growth has resulted from a mix of public and private interests facilitating financial, operational, and technological advances. The outcome is a complex, quasi-formal mix of private interests and firms and several government agencies. It is a large, highly integrated socio-technical system with essentially no competitors.

A full discussion of the entire U.S. air transportation system is well beyond the scope of what is possible here. It would include attention to the technical development of a growing variety of airplanes, airport construction (heavily subsidized by the Federal government), and the role of the U.S. military in the development of the communications and coordination infrastructure. It would attend to the politics and growth of popular non-commercial flying (so-called general aviation), as well as government regulation of aircraft structures and pilot performance and safety.7

Each of these components is itself complex and large-scale. Each is linked to important segments of American society: networks of technical elites, operational managers, industrial and governmental organizations and legislative interests. Together, these actors and organizations comprise a public/private sector of critical importance to the economy, national security and social life of the nation.

Our attention centers on "United States Air Traffic System" (USATS). It is a web of technologies and institutional relationships linking the components of the larger U.S. air transportation system through continuous coordination of aircraft. The system's primary institutional embodiment is the Federal Aviation Administration (the FAA) and its predecessor agencies.8 Secondary notice is taken of the air carriers and other "users" of the system.

The USATS, unlike EUROCONTROL its younger and much smaller
brother in western Europe, is predominantly funded by resources from the general tax fund. Conceptions of economic development do not adequately explain USATS development. Instead, I draw, in part, from developmental concepts as heuristic metaphor, and, in part, from the literature of organizational theory. Our purpose: to understand the development of an organization that manages a growing volume and complex mix of traffic with increasing scope, safety and reliability.

The time frame of this review is limited, beginning with the early days of the system in the 1940s and ending in 1980, just before its third major institutional crisis - the tumultuous strike of the Professional Air Traffic Controllers Organization (PATCO). This strike, its aftermath in operational travail, and the recent problems of the FAA (brought on by a combination of the deregulation of air transport and a controller cadre working continually at or near full capacity) are fascinating in their own right. Understanding this crisis, however, requires a good bit more than the story discussed below.

Parts of this story have been treated in institutional histories of the Federal Aviation Administration (FAA) and its predecessor agencies, in descriptions of the technical systems planned by engineering groups to carry expected loads, and in evaluations of FAA operations. All of this literature speaks to those who already know a good deal about the technical and operational aspects of national air traffic systems. None provide a perspective which can directly assist us in teasing out insights into the development of the air traffic system as a social system. A conceptual frame is needed which brings the technical languages of machines, structures and operations closer to the languages of social science and social history.

An integrating frame

A major step toward integrating technical and social science perspectives can be taken by conceiving of technical systems as social organization. In this view, the technical design and operational imperatives become guides to operator and managerial behavior. From a social science (or public policy) view, unless a technology becomes widely spread (or is likely to become so) it is a trivial activity. Widespread distribution or deployment of a technology necessarily requires some form of large-scale social organization. It may be decentralized as in the manufacture and distribution of personal computers. It may be physically and organizationally widespread and highly integrated like the distribution of electrical energy through large regional, national or even multi-national grids.

In this view, the techno-organization animates or gives social expression to technical possibilities. This perspective challenges us to examine the properties of technical designs and engineering systems in terms of their organizational requirements and imperatives. It leads us to explore the relationship between the designers' views of operational necessities and the implications of implemented designs for the behavior of operators who man the system.

Conceiving of technical systems in this way enables us to use organization theory to understand the social dynamics of techno-organizational systems, and the patterns of adaptation they exhibit in different situations or environments. A techno-organizational system, then, is shaped, internally, by the social requirements and social properties of technical operations inherent in its engineering designs and, externally, by cross-cutting pressures from its "host society."

When we conceive of the USATS in this way and compare it to the other LTSs under discussion in this volume (telephone, railroads, electrical power), important similarities and differences are evident. These are outlined schematically in Table 2. The similarities are reasonably obvious and we merely list them. The differences point to several important dimensions that would be useful for more general comparisons of LTSs.

Functionally, the USATS is a complex "sub-system" of the larger "whole system" of the U.S. air transportation industry. It is a lesser included, crucial element, in air transport operations. It is also much less fully integrated with its system neighbors than the elements of other systems discussed in this book. Put another way, the "hold" over USATS by other sub-components is a good deal less tight than that evident among the components in European or U.S. rail, electrical power, or telephone systems. It is less tightly coupled, physically, technically, and administratively to its system symbionts. USATS has experienced many of the same dynamics in its development from a small regional to a national network, as our European comparison systems, although changes have occurred more quickly in the U.S.. The logic of national benefit and integrated technical scope have been more
immediately compelling. At the same time, the aviation technologies of flight and coordination are less integrated with each other than we see in our comparison systems.

Table 2: Similarities and Differences Between Air Traffic Systems and Other Large-Scale Technical Systems

<table>
<thead>
<tr>
<th>1. Similarities (parallel components and connectors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Input Facilities (Initiating activity)</td>
</tr>
<tr>
<td>Airports</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Network Connectors and Control</td>
</tr>
<tr>
<td>Air Traffic Control</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Network Users</td>
</tr>
<tr>
<td>Users' aircraft</td>
</tr>
<tr>
<td>(Commercial, General</td>
</tr>
<tr>
<td>Aviation, Military)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Differences (ATS vs. Other LTSs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System level: Sub-system vs. Whole systems</td>
</tr>
<tr>
<td>Rate of National Development: Relatively very rapid</td>
</tr>
<tr>
<td>Degree of Technical Integration: Relatively disjointed</td>
</tr>
<tr>
<td>Degree of Personnel Integration: Full operator involvement vs. Operator as machine monitor</td>
</tr>
</tbody>
</table>

Airplanes and pilots can operate with more autonomy than trains, telephone services and electrical power systems. The connective networks are much less dominated by physical objects - rails, wires and power grids.

Finally, an air traffic (sub)system is largely a mental rather than a physical construct. It has no visible, concrete supporting connectors. The system must be "seen in the head," a mental construct recognized by thousands of people, (controllers, pilots, facilities managers) in order for "it" to be operative. U.S. Air Traffic Control (ATC), the operator/controller of the USATS, is the arbiter of the mental maps and procedural agreements guiding the behavior of its members. These are quite detailed, with many critical aspects, and must be known and followed by many, many users in order for the system to work highly effectively and reliably. This aspect is much less evident for telephones, electrical circuits, or railroad systems.

For the comparative objectives of this volume, it is important to keep these characteristics in mind as we describe some of the salient aspects of USATS development.

3 The development of USATS: External and internal guiding dynamics

The USATS has had an almost unbroken path of vigorous expansion. Such a pattern requires, at least, a high degree of agreement on system purposes and functions. Throughout its history, the USATS has been the object of an extraordinarily high degree of consensus about its mission. All of the major actors within and outside of the system have agreed that:

- Flying is intrinsically valued and air travel produces a major social benefit.
- All those who wish (and can afford) to fly should have the technical and operational means to do so.
- Due to increased demand for flight, increased technical capacities for aircraft, airports and coordination of aircraft aloft are required; It is the responsibility of the Federal Government to assist this development.

There has been an underlying political agreement that access to
air travel via either private means or commercial carriers is very nearly a public right. This has only recently been questioned.

The result of this consensus has been a readiness, if not always an ability, to respond favorably to proposals for increased resources for development. Indeed, during the time of our interest, the U.S. Congress had never reduced the amount of money requested by the FAA in support of their air traffic control function. Favorable treatment depended on the degree to which needs could be established and programs justified on the basis of meeting operational criteria. These criteria set the framework for the logic of development, and shaped the character and intensity of energies propelling organizational growth.

External demands from the host society have been constant, if potentially contradictory. The public (and especially its Congressional leaders) demands a system which:

- Is always safe;
- Carries anyone, anywhere, anytime (and is always safe);
- Enables private carriers to make a reasonable profit (while always being safe);
- Requires only modest coordination expenses of carriers, and the flying public. (Secondarily, keep costs for governmental administration moderate in terms of the level of safety and ease of traffic movement provided.)

From the earliest days of air travel in the U.S., there has been a strong emphasis on reducing the risk of operating an inherently hazardous technology. The economic success of air travel depends, in part, on the public's perception that using the service "can be habit-forming," i.e., one can do it time and again and survive. It is an activity of special utility to busy elites. Some of these elites are U.S. legislators whose political success is predicated on being able both to attend to the nation's business in Washington and maintain contacts with home constituencies often many hundreds (sometimes thousands) of miles from the capitol. Many of these legislators take an active interest in the quality of air traffic management, especially as it pertains to the movements in and out of one of the two airports the FAA had managed directly - National Airport across the Potomac River from Capitol Hill. (The other FAA airport - Dulles International Airport - is also in the Washington area.) One of the peculiar properties of the

U.S. air traffic system is the degree to which its performance is visible to those who have a direct influence on its funding and regulation.

The twin pressures from the travelling public and elites for extra-ordinarily reliable and safe performance resulted in a system - one of several large technical systems in the U.S. - that has attempted to achieve failure-free operations. That is, the goal of failure-free performance is a central objective of everyone in the system. This drive to achieve very high levels of operational reliability and the demonstrated effectiveness in nearly reaching these goals year after year qualifies the system as a "high reliability" organization. It is a quality that has had an overwhelming impact on the character and shape of the system's evolution.

Technical systems, then, are initially shaped by the operating requirements and social properties of technical operations that are inherent in its technical design. In the operation of the air traffic system, these imperatives were (and remain):

- **The Technical/Operational imperatives** to provide accurate, unequivocal information about location and intention of every aircraft; procedures which eliminate or drastically reduce the likelihood of disoriented aircraft or unexpected convergence of aircraft aloft, and assure timely guidance information to aircraft operators so that no aircraft "loses separation" from another or has a near collision or, most especially, a mid-air collision. The operative goal is to avoid "loss of separation," i.e., to allow two aircraft to come closer than 5 miles apart (and 1,000 ft. in vertical separation.) This is an absolute criterion for controller performance. If a controller suffers a moderate loss of separation between two aircraft s/he is working three times during their whole career, they are discharged.

- **The Technical/Managerial imperatives** to expand an integrated network throughout the nation and strive for optimum internal activity, interaction, and density of flow. The result was efforts to "pack the system," specifically, to press for headway between aircraft just above legal separation limits - now 5 miles at altitude, and 3 miles near airports under visual flight rules (VFR).

This combination of "imperatives" leads to a fundamental and abiding tension between safety and reliability on the one hand, and efficiency, on the other. In operational terms, tensions are between those who
of communications, electronics and procedures. Technical planning and development requirements call for advanced engineering, solutions to demanding (and interesting) technical problems and the deployment of costly new systems likely to change the working conditions of the operator cadre (and alter their relationships with pilots).

Early FAA leadership was in full accord with both Congressional and industrial leaders: increase the use of air transport (rail transport was the implicit comparison). There was a vigorous program of airport construction and improvement, and, in the pre-war late 1930s, a sense of urgency and then action to promote the growth of aviation infrastructure in preparation for hostilities. Early technical developments of air-to-ground communication, low frequency radio ranges and standardization of procedures for flying by instrument flying rules (IFR) had improved the capacity to identify and locate precisely the flight path of an aircraft. Controllers were trained to use coordination procedures and "flight strips", manually enter a paper strip for each aircraft aloft, then track the aircraft across airways, routing it in place in the sequence of other aircraft before and after it. These capacities and procedures improved service and allowed effective coordination among aircraft separated by a minimum of 10 minutes or 10 miles headway separation. The system - in the midst of its first major technological phase - was established and "in equilibrium" just prior to WW II.

The war brought substantial increases in traffic, technical developments and institutional challenges that set the stage for the FAA's first crisis. The character of the first crisis typifies subsequent problems and developmental dynamics. FAA and military responses to national defense requirements resulted in rapid expansion of communication service networks within the U.S., the deployment of FAA personnel to operate airport air traffic control towers to facilitate defense activities, and the establishment of provisional rules of air navigation. Military needs overwhelmed all others and the FAA functioned in large part as a civilian adjunct to military aviation and defense requirements.

During the war, military aviation developed new air navigation and air traffic technologies complementary to those of the civil aviation system. Military systems advanced beyond those employed for civil aviation, especially with the development of radar and its capability of "seeing" aircraft many miles from an airfield. Military commanders became de facto managers over many in the civilian controller cadre.

4 The development of USATS: Growth and consolidation

The USATS' maturation has been characterized by strong technical advocacy, institutional turbulence, extraordinary growth and astonishing reliability. The central developmental dynamics swirl around the need to manage a growing volume of complex air traffic while anticipating and implementing the technical transformations necessary to keep safely ahead of demand for air traffic services. Operational requirements consist of maintaining a cadre of dedicated air controllers and airway facilities employees who give social animation to the technical systems

Invest the system vs. Avoid overinvestment

Airline Pilots Associations
Airline management, and General Aviation Groups

Flying Public
Taxpayers Groups

Air Controllers Associations
Agency Management

Congress (and later, the National Transportation Safety Board)
Executive Office, esp. the Office of Management and Budget

This is a rich stew of advocates and watchdogs. It is fruitful ground for conflict over means and has the potential for exploitation. Much of the development story of U.S. Air Traffic System reflects such dynamics.
In 1946, immediately after the war, there was a rash of activity attempting to reorient the management of U.S. air traffic system for peacetime conditions. As the system had grown, it had become dispersed and its management structure ambiguous. It was time to re-assert civil control of air traffic management.

The Department of Commerce was authorized to take over the operation of military air navigation facilities overseas. Scattered administrative and training units were consolidated in Oklahoma City, where all the FAA schools were to be centered. Joint research and development policies were established to assure continued technical development and the application of military technologies to civil air uses. Common civil-military instrument flight rules (IFR) were officially issued. The President established the Air Coordinating Committee by Executive Order with the responsibility for coordinating national aviation policy. The International Civil Aviation Organization (ICAO), the authoritative international standard-setting body, assembled representatives of 60 foreign states for a demonstration of U.S. air navigation and traffic control equipment and techniques at the FAA's Evaluation Center in Indianapolis, Indiana. This move was influential in ICAO's later decision to recommend acceptance of the U.S. systems and techniques as international standards.

These post-war activities reflected a deep and persistent tendency for leaders of air traffic systems to coalesce administratively as well as a tendency to eliminate institutional ambiguities which might be the source of operational uncertainties. They concentrated training operations, agreed on common standards, used institutional mechanisms to coordinate policy. Above all, they attempted to limit the likelihood of uncoordinated competition.

There had been earlier attempts to move in this direction, but pre-war civil aviation had been struggling for initial viability. Before WW II, airways were not crowded; the problems of safety were not yet closely related to the real likelihood of mid-air collisions. However, the rapid growth of aviation activities, the blossoming of military facilities and activities during the war years, and the general reluctance to raise post-war types of administrative matters until the war was over resulted in a general sense that the system could become inchoate and disorganized as demobilization got underway.

For some technical "systems," e.g., the automobile or aircraft production, a "disorganized" sector means freedom to compete, possibly to prosper. Monopoly or finely grained coordination, the intent of the 1946 developments, is not preferred by those who stand to gain from competition. In the case of USATS, we see another tendency: the drive to reduce sources of ambiguity or conflict that might be the root of operational surprise. It is a tendency likely to be shared by all technical systems that have a relatively high level of perceived hazard.

Technical developments also serve to reduce operational surprise. In addition to institutional coalescence, 1946 was the year in which perhaps the single most important technical advance in air traffic control was introduced - the radar equipped control tower for civilian flying. This technology was first installed at Indianapolis Airport. (It was a modification and up-grade of radar developed by the armed forces.)

This development signalled the end of the first major technical phase of U.S. air traffic system development. The predominant coordination technique had been a manual/voice reporting system of "flight strips and shrimp boats" (small cutouts moved about a navigation map tracking the location of an aircraft as reported by the pilot). The manual/voice system would be supplanted either by a combination of radar, improved high-frequency navigation aids (VOR) and instrument landing systems (ILS) to improve pilot control during landings in foul weather or by "ground controlled approach" (GCA) in which the aircraft was "talked in" by operators scanning the plane's location and glide slope on specially designed radar. Radar would greatly improve the capacity of ground personnel to identify and assist aircraft aloft. As importantly for the development of the airways system, the omnidirectional VOR capability exploded the number of courses available for navigation constrained in the past by the ubiquitous four course radio ranges.

In a sense, the original system had nearly filled up. With the generous margins for error necessary in the manual/voice reporting-based system, peak time air traffic near the most used airports was approaching full capacity. Increased system capacity was required. Radar, the new instrumentation and added radio and telephone communications between control centers provided it. This enabled controllers to increase substantially the number of planes that could be worked safely.

New technologies made the controller task less problematic when
As radar was deployed to airports and the air route traffic control centers (ARTCC) that monitored the airways between airports, the whole system could handle more aircraft simultaneously. The radar surveillance system was complete: the skies rapidly became more crowded.

One view of FAA's overall developmental pattern is shown in Figure 1. This charts the annual number of employees, and financial resources (adjusted for inflation) available to the agency. A third curve - the growth in actual use of air traffic control services - is laid over the other two. The three curves could be expected to follow parallel paths: however, they are disjunct for three periods and point to times of strain and change. Each of these periods is discussed below. (Figure 2 shows the gross activity load placed on the air traffic control system by different branches of aviation.)

Radar gave controllers an independent source of information on the location and disposition of aircraft. The first relatively primitive, sweep radar was augmented by a series of technical changes that systematically reduced the controller's dependence on aircraft captains for flight information. It thereby increased air traffic safety and reduced pilot autonomy.
The United States Air Traffic System

The Korean War produced the first period of strain. Air activities increased over 100 percent from 1950 to 1956, while the FRA's budget had been in decline from 1951, the number of airline passenger miles, 10.7 million in 1953, and doubled. In April 1956, FAA had been cut from their 1955 levels. The FAA was again part of a war effort. They had cut many services, including air traffic control, to save money. However, there was a need for new equipment to handle the increased traffic.

The FAA was responsible for installing air traffic control systems in major cities, including Miami, Chicago, New York, and Los Angeles. The FAA was also responsible for developing a system to provide air traffic control in New York City.

In 1957, the FAA began to develop a new air traffic control system known as the TACAN (Time and Distance Air Navigation) system. The TACAN system was designed to provide air traffic control information to pilots flying over the United States. The TACAN system was based on the use of radar and radio navigation equipment. The FAA began to build TACAN stations in major cities across the United States in 1957.

In 1958, the FAA began to build TACAN stations in other cities across the United States. The TACAN system was designed to provide air traffic control information to pilots flying over the United States. The TACAN system was based on the use of radar and radio navigation equipment. The FAA began to build TACAN stations in major cities across the United States in 1957.

The TACAN system was designed to provide air traffic control information to pilots flying over the United States. The TACAN system was based on the use of radar and radio navigation equipment. The FAA began to build TACAN stations in major cities across the United States in 1957.

The TACAN system was designed to provide air traffic control information to pilots flying over the United States. The TACAN system was based on the use of radar and radio navigation equipment. The FAA began to build TACAN stations in major cities across the United States in 1957.
Agency. (When he stepped down, Congress restored his military benefits.)
Quesada had the job of consolidating civil aviation services and conducting Project Friendship, i.e., to negotiate what military facilities, practices and operations would be transferred to the FAA. This was completed in two years with the transfer of over 2,000 military air traffic control facilities in over 300 global locations to the FAA. The lineaments of the present system were in place.

By the early 1960s, the jet age was maturing. A number of jet aircraft had been certified that carried well over 100 persons. Jet speeds were increasing. Air passenger transport had forged well ahead of both the railways (for long haul domestic travel) and ships (for the Atlantic crossing). In addition to much higher aircraft speeds and flying altitudes, further technical and system enhancements were made.

In 1958 and 1959, the FAA had instituted Continental Control Areas (above 24,000 ft.) and several Positive Control Routes (below flight levels of 17,000 and 35,000 ft.) in which aircraft were mandated to be under Instrument Flight Rules (IFR), have operative radar and radio communications, and place themselves under ATC direction. By 1961, this system was replaced by a national system providing routing direction and radar advisories along three tiers of airways: lower level from 1,200 to 14,500 ft., intermediate airways from 14,500 to 24,000 ft. and high altitude jet ways above 24,000 ft. At about the same time, computers were beginning to be used for traffic accounting tasks.

This three tiered airways system enabled the FAA to continue serving a rapidly growing aviation industry within a traffic system which had become increasingly dense and tightly coupled. It also further complicated air traffic control operations, and required a parallel division of labor within ATC centers. Total FAA employment had increased to about 30,000. The air traffic system had become a full fledged bureaucracy of sizable proportion.

The FAA established Associate Administrators for Administration, Programs and Development. The airspace system programs included the Air Traffic Service, Flight Standards Service, Systems Maintenance Service and Airports Service providing guidance to seven U.S. FAA regions. Then, partly in response to the increased coordination needs, the FAA reversed a 15 year policy and gave the Washington office direct supervision over programs in the field. This immediately preceded several years of increasing operational and administrative complexity when air route traffic control centers (ARTCC) were being upgraded technically and, as a consequence of better radar and communication capabilities, were consolidated into fewer, more widely ranging ARTCCs.

The mid-1960s brought the second, now operational, period of strain. Between 1963 and 1967, there was some 65 percent overall growth in the amount of ATC traffic. Resources, however, did not follow the same pattern. The FAA's resources and manning levels dipped some 10 percent. The U.S. had become embroiled in Vietnam and war costs were soaring. President Johnson was attempting policies of both "guns and butter" and many Federal agencies faced increasing demands for services with stable budgets. While personnel resource levels hit a plateau, work loads increased steadily, due about equally to growth in both commercial and general aviation users.

At the same time, technical, procedural and administrative changes were "rationalizing the system." By 1964, three tiered airways gave way to the present two, and DME (distance measuring equipment) was mandated for all civil aircraft flying above 24,000 ft. Solid-state, real-time computers were introduced throughout the system. As a result, ATC operations were modestly simplified. Advanced radar systems increased the accuracy of aircraft position images. Computer-generated displays of aircraft identification and position enabled controllers to increase the number of aircraft they could handle simultaneously from 12-15 to 20-25. By 1965, the Continental (positive) Control Areas were expanded to cover the whole U.S. These technical and procedural improvements increased individual controller effectiveness.

Communications and administration were also improved. By 1968, the FAA had put in place a nationwide telephone and telex system connecting the central office with the most active airports, ATC regional offices and area managers. Daily conference telephone calls became a standard feature of management coordination. In addition, the FAA and Air Force increased their coordination and eliminated overlaps. ATC played a larger role in defense interception work and Continental Defense Command activities. Key FAA programs were centralized under the Administrator, while several critical functions that varied from region to region, such as the designation of controlled air space in terminal areas, were de-centralized.

Demand, however, grew faster than the system's capacity to handle the volume with ease. The ATC system geared up to handle increased demand. It extended the amount of controlled airspace and improved
more airports to enable them to receive ATC coordinated aircraft. Yet budgets and manpower allocations remained relatively constant. The few modest increases were used for capital and computer purchasing programs. The system became more densely packed, the margins for error declined, and working conditions worsened.

This situation drove controllers to consider organizing to secure relief from increasingly demanding, fatiguing and harrowing work conditions. FAA management was unsympathetic. The controller cadres were expected to perform in the face of adversity. They were then and still are part of a "can-do" organization. In many respects, they had a number of the characteristics of a quasi-military management culture. And they endured these conditions for some five years after the onset of the "stable state." In 1968, after considerable internal debate, the Professional Air Traffic Controllers Organization (PATCO) was formed with a membership of 5,000 in the first year. (It was to grow to over 15,000 by 1980.)

In a direct sense, the union that was to attain such notoriety in the early 1980s was yet another fractious product of the Vietnam War. It arose in a context of an increasing number of personnel related issues. The system became more vulnerable to personnel recruiting and retention problems. It also revealed the deep tension between controllers and management that continues to this day. This abiding tension is rooted in differences in judgment regarding what it takes to keep air traffic moving economically and safely. It results in recurrent labor troubles, as well as controversies about the character of technical solutions for future ATC problems.

Shortly after the formation of PATCO, the ATC system experienced its first instance of extreme airport congestion when the New York area airports had a day in which almost 2,000 aircraft were significantly delayed in taking off or landing. For the first time, the FAA was put into a position of having to restrict the use of certain airports. This was the initial break in the FAA's long standing public policy of serving any pilot who sought assistance at the time he/she requested it. The agency was edging into a position of having to ration its service - a process it still has a difficult time carrying out.

During the 1960s, the goals of service to all in a climate of extraordinary safety led to a series of incremental improvements in new technical systems, changes in procedures and air use restrictions, and operating rules that brought considerably more air space under direct FAA control, e.g., through lowering of Positive Control Area altitudes from 24,000 to 18,000 feet, and raised the specter of perhaps having to assign priorities to different classes of aviation. This, in turn, raised the question of the optimum relation between serving commercial, highly professional air crews and companies contrasted with the much more numerous, generally less well trained and equipped, though increasingly well organized association of general aviators.

There was and is the general recognition that safety problems arose primarily from pilots who were less skilled and/or were not under direct control of the ATC aloft. This was the source of the unidentified, surprise aircraft suddenly appearing on the radar scope or inadvertently entering restricted airspace and tangling with a commercial carrier. These were almost inevitably General Aviation pilots, i.e., private and business employed pilots flying unscheduled, irregular flights. (See Table 3 for the comparative safety records of commercial vs. general aviation.)

There has been a steady trend - continuing to the present - toward expanding the positive airspace under mandatory ATC control and increasing the instrument flying skills and navigation equipment requirements, e.g., multiple radios and radar transponders, in order to obtain ATC services. In the interest of overall efficiency and safety, users of the system have been required to increase their skill levels, technical and equipment capabilities and procedural and operational complexity. These changes have squeezed out the General Aviation aviator who has neither the time nor the money to keep highly skilled and to purchase and maintain costly on-board electronic equipment necessary to qualify for ATC service.

The benefits, stakes and costs of reliable, effective air transport were steadily growing. Thus far, however, sharp trade-offs in service had not been necessary. Vigorous activity was continually required to stay ahead of the demands of increased traffic. Higher skills, more information and tighter coordination processes were also necessary to handle increased system complexity and density. Computer-based data links and inflight following and up-dating of aircraft progress, were improved. And more finely integrated landing and navigation systems were introduced.

In the late 1960s and early 1970s, the FAA paid greater attention to the improvement of ATC controller training and retention. The agency expanded its national ATC training facility. Measures were taken to
This facility took over some of the responsibilities of controlling the flow of traffic from the 21 ARTCC centers throughout the U.S. Linked by telephone and teletypewriters, the facility was able to determine the overall capabilities of the system on a daily basis and issue instructions for restricted air traffic flows into areas that fell below expected capacity. (CFC became immensely important in the FAA's response to

Table 4: Hours Flown by General Aviation and Scheduled Domestic Air Carriers, and Passenger Miles Flown by Scheduled Domestic Air Carriers, 1930-1985

<table>
<thead>
<tr>
<th>Year</th>
<th>General Aviation</th>
<th>Scheduled Air Carriers*</th>
<th>Scheduled Air Carriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930</td>
<td>--</td>
<td>299</td>
<td>85</td>
</tr>
<tr>
<td>1940</td>
<td>3,200</td>
<td>710</td>
<td>1,052</td>
</tr>
<tr>
<td>1950</td>
<td>9,650</td>
<td>2,055</td>
<td>8,007</td>
</tr>
<tr>
<td>1960</td>
<td>13,121</td>
<td>3,530</td>
<td>30,567</td>
</tr>
<tr>
<td>1970</td>
<td>26,030</td>
<td>5,770</td>
<td>104,156</td>
</tr>
<tr>
<td>1980</td>
<td>41,016</td>
<td>6,247</td>
<td>200,829</td>
</tr>
<tr>
<td>1981</td>
<td>40,704</td>
<td>6,080</td>
<td>198,715</td>
</tr>
<tr>
<td>1982</td>
<td>36,457</td>
<td>5,962</td>
<td>210,149</td>
</tr>
<tr>
<td>1983</td>
<td>35,249</td>
<td>6,175</td>
<td>226,909</td>
</tr>
<tr>
<td>1984</td>
<td>36,119</td>
<td>6,971</td>
<td>243,692</td>
</tr>
<tr>
<td>1985</td>
<td>34,063</td>
<td>7,364</td>
<td>270,061</td>
</tr>
</tbody>
</table>

* Prior to 1971, Hours Flown was calculated by dividing the number of revenue miles by average speed per year.

Table 3: Accident Trends: U.S. Air Carriers (Domestic Operations) and General Aviation, 1930-1985

<table>
<thead>
<tr>
<th>Year</th>
<th>Accidents per 100,000 hrs. fl. Total</th>
<th>Fatal</th>
<th>Fatalities/100 million pass. miles</th>
<th>Accidents per 100,000 hrs. fl. Total</th>
<th>Fatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930</td>
<td>29.43</td>
<td>3.01</td>
<td>28.2</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1940</td>
<td>4.22</td>
<td>0.422</td>
<td>3.0</td>
<td>108.4</td>
<td>7.2</td>
</tr>
<tr>
<td>1950</td>
<td>1.90</td>
<td>0.195</td>
<td>1.1</td>
<td>46.6</td>
<td>5.1</td>
</tr>
<tr>
<td>1960</td>
<td>1.78</td>
<td>0.286</td>
<td>0.9</td>
<td>36.5</td>
<td>3.3</td>
</tr>
<tr>
<td>1970</td>
<td>0.539</td>
<td>0.017</td>
<td>(0)</td>
<td>18.1</td>
<td>2.5</td>
</tr>
<tr>
<td>1980</td>
<td>0.22</td>
<td>0.00</td>
<td>0.001</td>
<td>9.9</td>
<td>1.7</td>
</tr>
<tr>
<td>1981</td>
<td>0.38</td>
<td>0.06</td>
<td>0.001</td>
<td>9.5</td>
<td>1.78</td>
</tr>
<tr>
<td>1982</td>
<td>0.23</td>
<td>0.05</td>
<td>0.001</td>
<td>10.1</td>
<td>1.84</td>
</tr>
<tr>
<td>1983</td>
<td>0.32</td>
<td>0.06</td>
<td>0.001</td>
<td>9.9</td>
<td>1.78</td>
</tr>
<tr>
<td>1984</td>
<td>0.19</td>
<td>0.01</td>
<td>0.001</td>
<td>9.6</td>
<td>1.73</td>
</tr>
<tr>
<td>1985</td>
<td>0.22</td>
<td>0.05</td>
<td>0.001</td>
<td>8.6</td>
<td>1.53</td>
</tr>
</tbody>
</table>

As controller work situations. These changes came at a time when PATCO first tested its strength by initiating a three day, small scale, relatively ineffective work stoppage or "sick-out" in June, 1969. The "sick-out" was followed by the organization's first formally called strike, mid-1970. Some 3,000 (of some 16,000) controllers, mostly at the key ARTCCs, walked out for nearly three weeks. Airline schedules were severely disrupted. The issue, as in the earlier "sick-out," had to do with working conditions, pay and benefits. Having made its point, PATCO called off the stoppage during the court ordered show-cause hearing.

Another technical/systems development advance, Central Flow Control (CFC), was quietly introduced at FAA headquarters in 1970. CFC has been critical to the increased coordination of the sprawling ATC system.
the near national emergency precipitated by the firing of 11,400 PATCO controllers in 1981.)

The third period of strain occurred in the latter half of the 1970s. General Aviation levels exploded. While commercial carriers were more or less constant in their hours of flight time (see Table 4), jumbo jets were introduced. The passenger carrying capacity for commercial flights almost doubled, up to 200-250 per flight and flying speeds rose dramatically. Once again, the stakes involved with safe flight escalated.

The system approached another period of expected saturation. Brisk planning went on in anticipation of changes in the 1980s. A National airspace Plan was devised which was intended to provide the radar and computer technologies to "tighten the system" even more, packing more aircraft into the airspace, with more finely coordinated traffic control in metropolitan areas hosting an increasing number of airports with enhanced landing capacities.

Air traffic levels continued to increase dramatically. During the same period, FAA financial resources declined in constant dollars. Personnel levels declined as well. The stage was being set for a conflict between controllers and management. This time a robust union was in place.

5 Conclusions. Properties of networked technical systems

From this review of USATS development, what can be learned about the developments of large-scale technical systems? Does this story point to similarities among the systems discussed in the book? I think it does. They are the properties of networked LTs. These are the systems whose benefits depend on the qualities of networks of dispersed facilities and connectors that are relatively tightly coupled. These properties appear to intensify over time - as a function of the scale and complexity of the system.

Networked large technical systems are:
- Tightly coupled technically, with complex "imperative" organization and management prompted by operating requirements designed into the system, i.e., unless operations are conducted in x,y ways, there are no benefits, maybe great harm can be imagined. (This is a kind of soft technical determinism: either do it my way or it won't work and do good things for you.)
- Prone to the operational temptations of network systems, i.e., drive to achieve maximum coverage of infrastructure, and maximum internal activity or traffic within the network.
- Non-substitutable services to the public, i.e. there are few competing networks delivering the same service. (The more effective the existing systems, the more likely its monopoly.)
- The objects of public anxiety about the possible widespread loss of capacity and interrupted service. (The more effective it is, the more likely the anxiety.)
- The source of alarm about the consequences of failures to users and outsiders of serious operating failures, e.g., mid-air collisions, nuclear power station disruptions, etc., and subsequent public expressions of fear and demands for assurances of reliable operations.

Notes:

1 Work for this chapter was supported in part by the National Science Foundation Grant No. SES-8708046, and the Institutes of Governmental Studies and Transportation Studies, University of California, Berkeley. My thanks to Nick Komons, Historian, Federal Aviation Administration, for his careful review and Paula Consolini for able assistance in data collection and review. Remaining errors are of course, my responsibility.

2 Night mail flights were initiated in 1921 after this was proved feasible by following bonfires provided by volunteer farmers. See W. Leary, Jr., Airmail Pioneers. Washington/D.C.: Smithsonian Press, 1973.

8 Note: The Federal Aviation Administration (and its predecessor agencies) have carried on three functions since the mid-1930's. Air traffic coordination and extending and maintaining a national system of airways has been its primary function, occupying some 75 to 80 percent of its annual budgets throughout the years. The FAA also has promotional and regulatory functions. The agency encourages communities to develop more effective and higher capacity airports to facilitate commercial air transportation services. It is quite visible politically, the vehicle for the disbursement of millions of dollars each year for airport construction and improvements in states across the country. The FAA has an important regulatory function, as well: asserting the public that the aircraft operating within the U.S. possess a high degree of airworthiness and that the FAA has had vigorous programs in pilot certification involving, in 1980, some 800,000 currently qualified pilots; and it conducts technically demanding certification of aircraft prior to their introduction into regular use. An important aspect of these latter activities is the investigation of aircraft accidents in support of the National Transportation Safety Board, ferreting out causes as a basis for improving procedures and/or making remedial changes in aircraft design and configuration.

9 We set aside for the time being, a) the tale of the engineering developments of navigation, communication and aircraft tracking technologies that are the electronic nerves of air traffic identification and coordination, and b) the process and conditions that resulted in the assurance of continuous growth in air travel. There is also a small amount added to each airline ticket and deposited in the Airports and Air Ways Trust Fund. Until recently, this fund has been used mainly for the improvement of existing and the development of new airports.

10 I assume that aircraft operate very reliably and are flown by very skilled pilots. In effect, we hold constant the predictability of the machines and their operators - the prime objects of coordination by those who man the air traffic system.

11 The fourth crisis is upon us: a clear sense that the system is nearing its capacity to deal with existing traffic in a safe and expeditious manner. This is due to the effects of deregulation and a continued growth in general aviation (non-commercial carrier) flying.

16 This approach parallels C. Perrow's recent work. See Normal Accidents. New York: Basic Books, 1986, esp. Chap. 3. It differs in stressing the variations in the social properties of the technologies. Perrow orders the technologies he examines in terms of their physical properties, e.g., their internal equipment complexity and the degree to which they are mechanically tightly or loosely coupled. Cf. L. Winner, Autonomous Technology. Cambridge/Mass.: MIT Press, 1974.

17 "Any citizen ... [has] a public right of freedom of transit through navigable airspace." Sec. 104, Federal Aviation Act of 1958. In organization theory, this is a situation in which there is high agreement on goals, and the problem is to gain agreement on means, a much less difficult matter than if specifying organizational goals were also a matter of content. See J.D. Thompson, Organizations in Action. New York.: McGraw-Hill, 1967, among a number of others, for the decision-making and structural implication of this situation.

18 The FAA has experienced periods of scarce resources (see Figure 1), but these have been visited on the agency from the Executive Office of President. Whatever the agency could get through that office for Air Traffic Control, Congress appropriated. While there have been budget disputes in Congress, and the FAA has not gotten all it sought, these disputes have not concerned the support of the air traffic control function. Rather, they have been about the degree to which funds set aside for "airway and airport development" would be used not only to provide funds to states and communities to build and improve airports but to carry the increasingly heavy costs of operating the system. Until 1980, almost none of these funds, collected as a small tax on each airline passenger ticket, had been allocated for ATC operating costs. These funds are politically precious and are dispensed by Congress to favored local constituencies.

20 In the public and media mind, the FAA's function as manager of the air traffic system is often confused with its responsibilities for assuring the airworthiness of airplanes themselves. On occasion, airline problems with the physical integrity
of airframe and engines and the FAA’s visibility in regulating the manufacture and maintenance of aircraft is blurred in the media. The regulatory role is much less directive than the managerial one and occupies only about twenty percent (20%) of the agency’s resources and personnel. See Note 7 above.

21 The Federal Aviation Administration, hereinafter understood to include the FAA and its predecessor agencies, especially, the Civil Aviation Administration (CAA).

22 Indeed, a case can be made that all organizations attempt as much to reduce or contain sources of uncertainty in their internal and external environments as they seek to maximize economic or operational values. See for example, J.D. Thompson 1967, op. cit., and J. Galbraith, Organizational Design. Reading/Mass.: Addison-Wesley, 1977.

CHAPTER 9
THE FRENCH ELECTRICAL POWER SYSTEM:
AN INTER-COUNTRY COMPARISON

Maurice Lévy-Leboyer

1 Electrical power in France - a deviant case?

On the basis of available statistics the French record in the field of electrical power does not seem to match that of other major industrial nations. Production according to official sources did not amount to more than 0.4 billion Kwh at the turn of the century and 1.8 billion Kwh in 1915-19. This is less than 4% of the 30 billion Kwh produced over the same period by Germany, the U.K. and the U.S., taken together. Of course, statistics were quite defective in those early years. They were improved only in 1923 when the French census included for the first time all productive facilities, instead of a sample restricted to the larger electrical plants as in earlier periods. Nevertheless, the gap was a real and persistent one, as indicated by the fact that French output of electrical power only improved (by 5-year averages) from 7.5 to 20 billion Kwh in the interwar years, while that of the three major countries went up from 90 to 230 billion Kwh, leaving the ratio unchanged at 8.4%. In a way it might not seem fair to compare economies so different in terms of population size. But on a per capita basis, output remained at 325 Kwh in 1920-24 and 480 Kwh in 1935-39, i.e. in both cases at only 53% of the three major countries. And the ratios are similar when total energy consumption or domestic consumption (i.e. the use of electric appliances, including light, by households) is used as an indicator.

Obviously one might point out that France was not endowed with natural resources: coal was lacking and distance made power transportation from the Alps or other mountains a costly undertaking at that stage of technological development. However, when one takes into account the engineering tradition of the country, its financial resources,